Bifurcation of synchronous oscillations into torus in a system of two reciprocally inhibitory silicon neurons: experimental observation and modeling.

نویسندگان

  • Vladimir E Bondarenko
  • Gennady S Cymbalyuk
  • Girish Patel
  • Stephen P Deweerth
  • Ronald L Calabrese
چکیده

Oscillatory activity in the central nervous system is associated with various functions, like motor control, memory formation, binding, and attention. Quasiperiodic oscillations are rarely discussed in the neurophysiological literature yet they may play a role in the nervous system both during normal function and disease. Here we use a physical system and a model to explore scenarios for how quasiperiodic oscillations might arise in neuronal networks. An oscillatory system of two mutually inhibitory neuronal units is a ubiquitous network module found in nervous systems and is called a half-center oscillator. Previously we created a half-center oscillator of two identical oscillatory silicon (analog Very Large Scale Integration) neurons and developed a mathematical model describing its dynamics. In the mathematical model, we have shown that an in-phase limit cycle becomes unstable through a subcritical torus bifurcation. However, the existence of this torus bifurcation in experimental silicon two-neuron system was not rigorously demonstrated or investigated. Here we demonstrate the torus predicted by the model for the silicon implementation of a half-center oscillator using complex time series analysis, including bifurcation diagrams, mapping techniques, correlation functions, amplitude spectra, and correlation dimensions, and we investigate how the properties of the quasiperiodic oscillations depend on the strengths of coupling between the silicon neurons. The potential advantages and disadvantages of quasiperiodic oscillations (torus) for biological neural systems and artificial neural networks are discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling Alternation to Synchrony with Inhibitory Coupling: A Neuromorphic VLSI Approach

We developed an analog very large-scale integrated system of two mutually inhibitory silicon neurons that display several different stable oscillations. For example, oscillations can be synchronous with weak inhibitory coupling and alternating with relatively strong inhibitory coupling. All oscillations observed experimentally were predicted by bifurcation analysis of a corresponding mathematic...

متن کامل

A neural mass model of CA1-CA3 neural network and studying sharp wave ripples

We spend one third of our life in sleep. The interesting point about the sleep is that the neurons are not quiescent during sleeping and they show synchronous oscillations at different regions. Especially sharp wave ripples are observed in the hippocampus. Here, we propose a simple phenomenological neural mass model for the CA1-CA3 network of the hippocampus considering the spike frequency adap...

متن کامل

Application of an Additive Self-tuning Controller for Static Synchronous Series Compensator for Damping of Sub-synchronous Resonance Oscillations

In this paper, an additive self-tuning (ST) control scheme is presented for a static synchronous series compensator (SSSC) to improve performance of conventional PI control system for damping sub-synchronous resonance (SSR) oscillations. The active and reactve series compensation are provided by a three-level 24-pulse SSSC and fixed capacitor. The proposed ST controller consists of a pole shift...

متن کامل

Locust Olfaction Synchronous Oscillations in Excitatory and Inhibitory Groups of Spiking Neurons

During odour recognition, excitatory and inhibitory groups of neurons in the second stage of the locust olfactory system, the antennal lobe (AL), fire alternately. There is little spread in the firing times within each group. Locust anatomy and physiology help to pin down all parameters apart from the weights in a coarse spiking neuron model of the AL. The time period and phase of the group osc...

متن کامل

Spatially Localized Synchronous Oscillations in Synaptically Coupled Neuronal Networks: Conductance-based Models and Discrete Maps

We study the qualitative behavior of localized synchronous oscillations organized by synaptic inhibition in two types of spatially extended neuronal network models driven by a time-independent, localized excitatory input. Each network is formulated as a one-dimensional network of conductancebased models constituting a high-dimensional dynamical system of nonlocal differential equations. Althoug...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Chaos

دوره 14 4  شماره 

صفحات  -

تاریخ انتشار 2004